张雅

更新时间:2023-09-21

姓名:张雅

性别:女

出生年月198405

职称/职务:教授/省部级人才

学位/学历:博士/研究生

/博生导师:硕导、博导

联系方式yazhang@whut.edu.cn

研究方向 等离子体物理理论与数值模拟;凝聚态物理理论;

教育背景与工作经历:

2021.11-,武汉理工大学,理学院物理系,教授,博士生导师

2016.06-2021.10,武汉理工大学,理学院物理系,副教授,硕士生导师

2013/10-2015/10,比利时安特卫普大学,化学系,博士后

2013.07-2016.05,华中科技大学,物理学院,博士后

2010.09-2013.06,大连理工大学,等离子体物理,博士

主要教学科研成果

1.主要从事等离子体物理的解析理论和数值模拟研究,包括量子等离子体和经典等离子体两个领域。前者包括与离子束驱动的惯性约束聚变相关的高能量密度物理、温稠密物质(Warm Dense Matter, WDM) 等方向,采用量子流体动力学(Quantum Hydrodynamics, QHD) 模型,以线性解析理论和非线性数值模拟相结合的方法。后者包括磁约束聚变中的托卡马克启动过程,低温等离子体中的微等离子体、介质阻挡放电、容性耦合等离子体、气体击穿等问题,主要采用Particle-in-cell/Monte Carlo (PIC/MC) 模型。

2.已经在Plasma Sources Science and Technology,Journal of Applied Physics等国际高水平刊物上发表第一作者或通讯作者80多篇,最近2年课题组每年发表10篇论文以上。德国鲁尔波鸿大学等国外高校,以及国内华中科技大学等单位都建立了广泛和深入的学术联系。

3. 研究生科研培养方面注重个性化指导,鼓励学生创新。为学生提供参与国家自然科学基金和企业项目的机会,帮助他们在实际科研中积累经验,并资助学生参加国际学术会议和讲习班。指导的本科生多次获得国家大学生创新创业训练计划项目,发表论文,获得竞赛奖励和优秀毕业论文和优秀毕业生。硕士生和博士生也多次获得竞赛奖励,学术会议最佳墙报讲、优秀毕业论文等奖励。

主要科研项目:

1.国家自科基金面上项目, 重离子束驱动温稠密物质的PIC/MC/QHD混合模拟研

学术兼职:

中国电工技术学会等离子体及应用专业委员会委员(2021年至今);

中国核学会计算物理分会理事(2024-2028);

育部学位中心博士硕士和博士论文评阅人;

Plasma Sources Science and Technology、Physics of Plasmas等杂志评阅人

2年发表文章列表:
[1] Z. Chen, Z. Chen, Y. Wang, J. Xu, Z. Chen, W. Jiang, H. Wang, and Y. Zhang, “Stochastic

weighted particle control for electrostatic particle-in-cell Monte Carlo collision simulations in an

axisymmetric coordinate system”, Computer Physics Communications, 109390 (2024)

[2] H. Wu, R. An, C. Jiang, D. Zhong, W. Jiang, and Y. Zhang, “Breakdown modes of capacitively

coupled plasma: II. Non-self-sustained discharges”, Plasma Sources Science and Technology 33,

095004 (2024)

[3] H. Wu, R. An, D. Zhong, W. Jiang, and Y. Zhang, “Breakdown modes of capacitively coupled

plasma: I. Transitions from glow discharge to multipactor”, Plasma Sources Science and

Technology 33, 095003 (2024)

[4] Y. Zhang, F. Zhai, and W. Jiang, “Valley-polarized edge plasmons in graphene p–n junctions

with pseudomagnetic fields”, New Journal of Physics 26, 093017 (2024)

[5] S. Yu, Z. Chen, J. Xu, H. Wang, L. Wang, Z. Wang, W. Jiang, J. Schulze, and Y. Zhang,

“Impedance matching design for capacitively coupled plasmas considering coaxial cables”,

Journal of Physics D: Applied Physics 57, 475204 (2024)

[6] S. Yu, H. Wu, S. Yang, L. Wang, Z. Chen, Z. Wang, W. Jiang, J. Schulze, and Y. Zhang,

“Kinetic simulations of capacitively coupled plasmas driven by tailored voltage waveforms with

multi-frequency matching”, Plasma Sources Science and Technology 33, 075003 (2024)

[7] Y. Zhou, J. Xu, Y. Wang, H. Wu, H. Wang, W. Jiang, and Y. Zhang, “Numerical

characterization of capacitively coupled CF4 plasmas modulated by anion beam injection”,

Plasma Sources Science and Technology 33, 065002 (2024)

[8] Y. Wang, Y. Zhou, J. Chen, Y. Cao, Z. Wang, X. Huang, and Y. Zhang, “Numerical

characterization of capacitively coupled plasma driven by tailored frequency modulated radio

frequency source”, Plasma Sources Science and Technology 33, 055009 (2024) [9] L. Zhao, S. Yu, Y. Wang, Z. Chen, X. Liu, H. Wang, W. Jiang, and Y. Zhang, “Impedance

matching design of capacitively coupled plasma with fluid and external circuit coupled model”,

Plasma Processes and Polymers, e2400017 (2024)

[10] Z. Chen, H. Wang, S. Yu, Y. Wang, Z. Chen, W. Jiang, J. Schulze, and Y. Zhang, “Electrical

characteristics of the GEC reference cell at low pressure: a two-dimensional PIC/MCC modeling

study”, Plasma Sources Science and Technology 33, 045003 (2024)

[11] J. Xu, Z. Chen, Y. Wang, S. Yu, H. Wang, W. Jiang, and Y. Zhang, “A numerical approach for

nonlinear transmission line analysis with bidirectional coupling to lumped-element and

particle-in-cell models”, Journal of Computational Physics 509, 113056 (2024)

[12] Z. Chen, S. Yu, J. Xu, D. Cao, Z. Chen, W. Jiang, and Y. Zhang, “Numerical impedance

matching via extremum seeking control of single-frequency capacitively coupled plasmas”,

Physica Scripta 99, 025610 (2024)

[13] Y. Zhou, J. Xu, Y. Wang, H. Wu, H. Wang, W. Jiang, and Y. Zhang, “Numerical

characterization of capacitively coupled CF4 plasmas modulated by anion beam injection”,

Plasma Sources Science and Technology 33, 065002 (2024)

[14] D. Cao, S. Yu, Z. Chen, Y. Wang, H. Wang, Z. Chen, W. Jiang, and Y. Zhang, “Optimizing

impedance matching parameters for single-frequency capacitively coupled plasma via machine

learning”, Journal of Vacuum Science & Technology A 42, 013001 (2023)

[15] Q. Wang, H. Wu, Y. Wang, Y. Zhang, W. Jiang, and Y. Zhang, “Influence of pulse width on the

breakdown process of nanosecond pulse discharge at low pressure”, Journal of Physics D:

Applied Physics 56, 465201 (2023)

[16] L. Chen, H. Wu, Z. Chen, Y. Wang, L. Yi, W. Jiang, and Y. Zhang, “Breakdown modes in

nanosecond pulsed micro-discharges at atmospheric pressure”, Journal of Physics D: Applied

Physics 57, 115205 (2023)

[17] Z. Chen, J. Xu, H. Wang, H. Wu, W. Jiang, and Y. Zhang, “Influence of external circuitry on

CF4 breakdown process in capacitively coupled plasma”, Journal of Vacuum Science &

Technology B 41, 053203 (2023)

[18] Y. Chen, X. Jiang, L. Yao, W. Jiang, H. Liu, and Y. Zhang, “Electron scattering cross sections

from NH3: a comprehensive study based on R-matrix method”, Plasma Sources Science and

Technology 32, 045017 (2023)

[19] Z. Chen, Z. Chen, W. Jiang, L. Guo, and Y. Zhang, “Line intensity calculation of laser-induced

breakdown spectroscopy during plasma expansion in nonlocal thermodynamic equilibrium”,

Optics Letters 48, 3227–3230 (2023)

[20] L. Chen, H. Wu, Z. Chen, Y. Wang, L. Yi, W. Jiang, and Y. Zhang, “Note on particle balance in

particle-in-cell/Monte Carlo model and its implications on the steady-state simulation”, Plasma

Sources Science and Technology 32, 034001 (2023)

[21] Y. Zhang, F. Zhai, and W. Jiang, “Valley-Hall alternatively changing conductivity in gapped

and strained graphene”, Optics Letters 48, 1998–2001 (2023)

[22] Y. Zhang, F. Zhai, and W. Jiang, “Valley-dependent conductivity and dispersion relation of

surface magnetoplasmons”, Applied Surface Science 619, 156717 (2023)

[23] X. Li, H. Wu, Y. Zhong, C. Guo, L. Yi, W. Jiang, and Y. Zhang, “Breakdown mode and

parameter space of micro-discharge sustained by thermionic emission”, Journal of Physics D:

Applied Physics 56, 175202 (2023)

[24] X. Jiang, N. Liu, J. Chen, Q. Chen, Y. Zhang, W. Jiang, L. Zhang, and H. Liu, “Theoretical

study of low-energy electron collision with normal-pentane using r-matrix method”, Physica

Scripta 98, 035404 (2023)

[25] S. Yu, H. Wu, J. Xu, Y. Wang, J. Gao, Z. Wang, W. Jiang, and Y. Zhang, “A generalized

external circuit model for electrostatic particle-in-cell simulations”, Computer Physics

Communications 282, 108468 (2023)